Spatiotemporal receptive field properties of a looming-sensitive neuron in solitarious and gregarious phases of the desert locust.
نویسندگان
چکیده
Desert locusts (Schistocerca gregaria) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function. Solitarious locusts had larger eyes and a greater degree of binocular overlap than those of gregarious locusts. The receptive field to looming stimuli had a large central region of nearly equal response spanning 120 degrees x 60 degrees in both phases. The DCMDs of gregarious locusts responded more strongly than solitarious locusts and had a small caudolateral focus of even further sensitivity. More peripherally, the response was reduced in both phases, particularly ventrally, with gregarious locusts showing greater proportional decrease. Gregarious locusts showed less habituation to repeated looming stimuli along the eye equator than did solitarious locusts. By contrast, in other parts of the receptive field the degree of habituation was similar in both phases. The receptive field organization to looming stimuli contrasts strongly with the receptive field organization of the same neurons to nonlooming local-motion stimuli, which show much more pronounced regional variation. The DCMDs of both gregarious and solitarious locusts are able to detect approaching objects from across a wide expanse of visual space, but phase-specific changes in the spatiotemporal receptive field are linked to lifestyle changes.
منابع مشابه
Receptive field properties and intensity-response functions of polarization-sensitive neurons of the optic tubercle in gregarious and solitarious locusts.
Many migrating insects rely on the plane of sky polarization as a cue to detect spatial directions. Desert locusts (Schistocerca gregaria), like other insects, perceive polarized light through specialized photoreceptors in a dorsal eye region. Desert locusts occur in two phases: a gregarious swarming phase, which migrates during the day, and a solitarious nocturnal phase. Neurons in a small bra...
متن کاملA comparison of nutritional regulation in solitarious- and gregarious-phase nymphs of the desert locust Schistocerca gregaria.
Nutritional regulatory responses were compared for the cryptic 'solitarious' and the conspicuously coloured, aggregating 'gregarious' phases of the desert locust Schistocerca gregaria. The desert locust has the genetic potential to exist in either phase, changing between them within a lifetime and epigenetically across generations. Our aim was to compare final-instar nymphs of the two phases wi...
متن کاملPhenotypic Transformation Affects Associative Learning in the Desert Locust
In desert locusts, increased population densities drive phenotypic transformation from the solitarious to the gregarious phase within a generation [1-4]. Here we show that when presented with odor-food associations, the two extreme phases differ in aversive but not appetitive associative learning, with solitarious locusts showing a conditioned aversion more quickly than gregarious locusts. The ...
متن کاملCompensatory plasticity at an identified synapse tunes a visuomotor pathway.
We characterized homeostatic plasticity at an identified sensory-motor synapse in an insect, which maintains constant levels of motor drive as locusts transform from their solitarious phase to their gregarious swarming phase. The same mechanism produces behaviorally relevant changes in response timing that can be understood in the context of an animal's altered behavioral state. For individual ...
متن کاملEnvironmental Adaptation, Phenotypic Plasticity, and Associative Learning in Insects: The Desert Locust as a Case Study.
The ability to learn and store information should be adapted to the environment in which animals operate to confer a selective advantage. Yet the relationship between learning, memory, and the environment is poorly understood, and further complicated by phenotypic plasticity caused by the very environment in which learning and memory need to operate. Many insect species show polyphenism, an ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 103 2 شماره
صفحات -
تاریخ انتشار 2010